

INNOVATIVE CUSTOMIZED SOLUTIONS

LCV

OPERATING MANUAL

LCV

Version September 2025

Index

1. Introduction	3
1.1. General information	3
1.2. Target group	3
1.3. Manufacturer's contact address	4
1.4. Personnel qualification.....	4
1.5. Safekeeping.....	4
2. Safety instructions.....	5
2.1. General safety instructions	5
2.2. Safety instructions for the operator.....	5
3. Product description	6
3.1. Functional principle LCV	6
3.2. Marking	6
3.3. Part list and exploded view of the valve	7
3.4. Tightening torque.....	8
4. Transport and storage	8
5. Installation	9
5.1. Preparation	9
5.2. Installation.....	9
6. Operation	12
6.1. Manual operation	12
6.2. Automated operation	13
7. Maintenance	14
7.1. General	14
7.2. Bonnet sealing replacement	14
7.3. Body sealing replacement	16
8. LCV ATEX Version	17
8.1. General information	17
8.2. Safety instructions for explosive atmospheres	17
8.3. ATEX Marking.....	18
8.4. Operation in explosive environments	20
8.5. Anti-static design	21

1. Introduction

1.1. General information

In order to ensure successful and safe operation of our valves, the entire operating manual must have been read through and understood prior to installation and commissioning.

Should difficulties or questions arise that cannot be solved with the help of the operating manual, please contact the supplier/manufacturer.

This Operating Manual was compiled in accordance with the regulations of guideline 2014/68/EU and covers the areas of: installation/commissioning, maintenance, repair, storage, packaging, transport and disposal.


The operator is responsible for adhering to local safety regulations. When using the valve outside the Federal Republic of Germany, the operator must ensure that valid national regulations are adhered to.

The manufacturer reserves all rights of technical changes and improvements at any time.

Caution

The disregard of the caution and warning notices may lead to hazards, which in turn may cause the warranty to become invalid.

Notes

Please keep this instruction manual in a safe place for future reference.

1.2. Target group

This operating manual is directed to people who are entrusted with the installation planning, installation, commissioning or maintenance/repair. These people must have qualifications in accordance with their activities and functions. This also includes the knowledge of applicable accident prevention regulations, generally recognized safety regulations, EU guidelines and country-specific standards and regulations.

1.3. Manufacturer's contact address

Should difficulties or questions arise that cannot be solved with the help of the Operating Manual, please contact the manufacturer.

Our technical team and customer service officers are pleased to assist you with any question you may have.

m-tech gmbh
Teslastr. 6
74670 Forchtenberg
Germany
Phone: +49 7947 939-0
Telefax. +49 7947 939-010
E-mail: info@m-tech-gmbh.com
Website: www.m-tech-gmbh.com

1.4. Personnel qualification

Transport, installation, commissioning, maintenance or repair must only be performed by trained or instructed personnel.

Work on electrical equipment of the device must only be performed by a qualified electrician or instructed people under the guidance and supervision of a qualified electrician according to the rules of engineering.

1.5. Safekeeping

Access to the entire Operating Manual must be guaranteed at all times at the place of operation of the valve in order to be able to look at it any time.

2. Safety instructions

2.1. General safety instructions

The valves comply with the state of the art and the recognized rules of technical safety, but dangers can still arise. Operate the valves only in perfect condition taking into account the entire operating manual.

Caution

Use of material-incompatible media, exceeding the limit values of medium pressure and temperature and mechanical additional loads can result in failure of the valve material and bursting of the valve.

2.2. Safety instructions for the operator

The people entrusted with the installation, maintenance or repair must be qualified in accordance with their activities and functions.

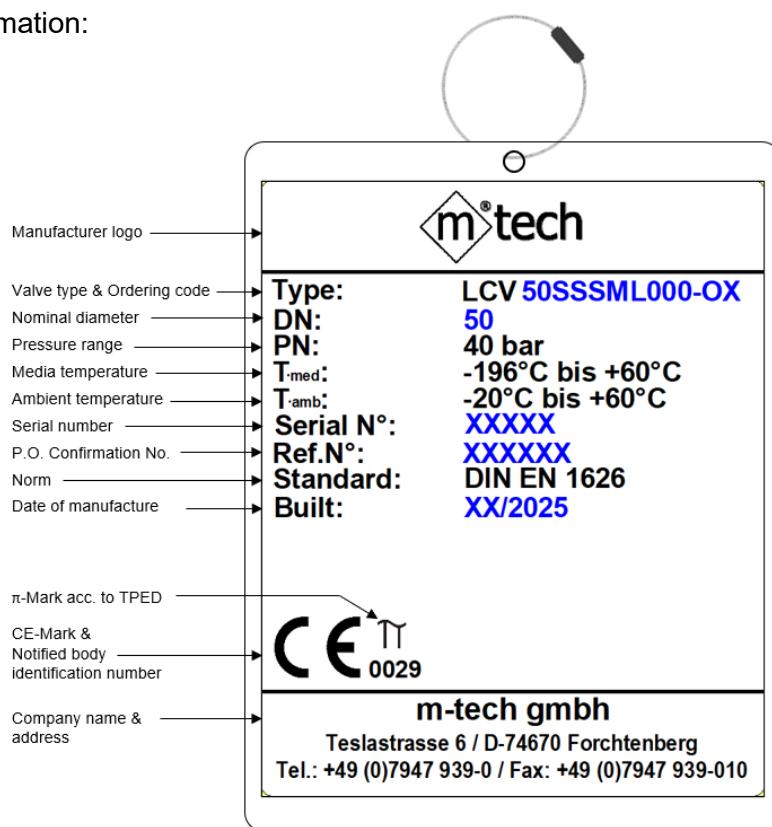
Based on their technical training, experience and their knowledge of the applicable standards, the personnel must be able to evaluate the work entrusted to them, understand the interactions between valve and system and recognize possible dangers.

They must also have knowledge of applicable accident prevention regulations, generally recognized safety regulations, EC guidelines and country-specific standards and regulations and all application-based regional and company-internal regulations and requirements.

3. Product description

3.1. Functional principle LCV

The cryogenic ball valves LCV series from m-tech is designed to operate at extremely low temperatures, transporting supercooled liquids such as nitrogen, argon, oxygen and liquid natural gas (LNG). The LCV valves can be operated manually or automated with pneumatic or electrical rotary actuators, within the permitted pressure and temperature ranges.

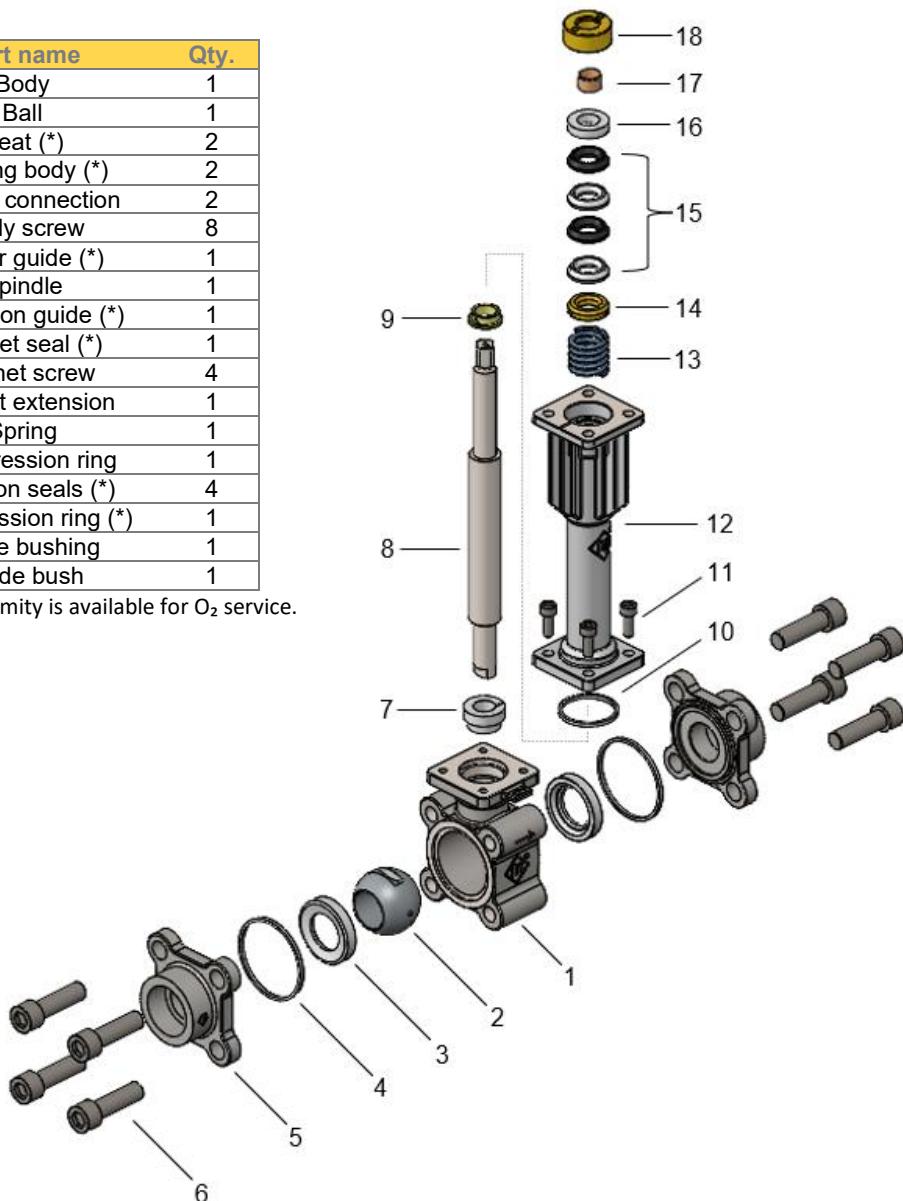


Attention

The LCV series are not suitable for media with solid particles.

3.2. Marking

Each LCV valve carries an nameplate. The nameplate will be attached with a stainless steel wire to the body valve. The plate is also made of stainless steel. This nameplate contains following information:


Attention

In order to be able to identify a valve do not remove, cover or paint over the nameplate

3.3. Part list and exploded view of the valve

Pos.	Part name	Qty.
1	Body	1
2	Ball	1
3	Seat (*)	2
4	Sealing body (*)	2
5	Flange connection	2
6	Body screw	8
7	Lower guide (*)	1
8	Spindle	1
9	Extension guide (*)	1
10	Bonnet seal (*)	1
11	Bonnet screw	4
12	Bonnet extension	1
13	Spring	1
14	Compression ring	1
15	Chevron seals (*)	4
16	Compression ring (*)	1
17	Guide bushing	1
18	Guide bush	1

(*) BAM/CTE conformity is available for O₂ service.

3.4. Tightening torque

The following table shows the required tightening torque for the screws of the valve.

Valve size	Body		Bonnet	
	ISO Metric Threads	Torque (Nm)	ISO Metric Threads	Torque (Nm)
DN15 - DN20	M10x20	30	M6x16	10
DN25 - DN32	M12x25	40	M6x16	10
DN40 - DN50	M14x40	55	M6x16	10

Attention

Lower torques may lead to malfunction or leakages.

Do not exceed tightening torques.

Attention

Body and bonnet screws should be re-checked and re-adjusted if necessary after putting the valve into cryogenic service. Due to the change of temperature these may become loose.

4. Transport and storage

Valves have to be handled, transported and stored with care:

- The valve is to be kept in its original packaging and/or with the protection caps on the end connections. The valve should be stored and transported (also to the installation site) on a pallet (or supported in a similar way).
- If stored prior to installation, the valve is to be stored in a closed room and to be protected against harmful influences such as dirt or moisture.
- Especially the end connections must not be damaged by mechanical or any other influences.
- Valves must be stored in the same way they were delivered. The drive can not be activated.

Caution

The valve must be transported carefully to avoid damage of the valve and operator.

5. Installation

5.1. Preparation

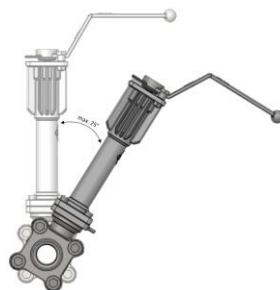
Before installing the LCV, confirm that it is appropriate for the intended use and ensure that the pipeline is thoroughly cleaned of any contamination, especially of hard substances.

If installation on existing pipeline, verify the distance between pipeline ends to be equal to face to face valve dimension. The gap, however, must not be larger than necessary so that no additional stress is generated in the pipeline during installation.

Caution

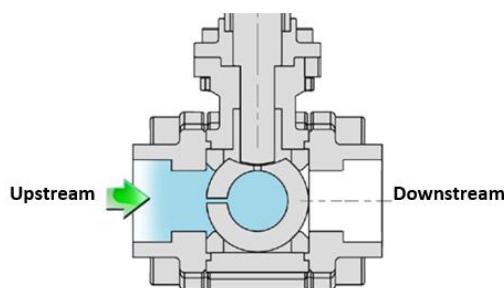
Before starting the installation the pipeline must be fully depressurized and ensure that no pressure is trapped inside the valve.

Attention


The valve must be carefully transported to the installation site and can only be unpacked there.

5.2. Installation

The LCV long version is designed according to cryogenic standard BS 6364 for non-cold-box applications and must be installed with the bonnet in vertical position or within 45° from the vertical axis.


The LCV short version is designed according to cryogenic standard DIN EN 1626 and must be installed with the bonnet in vertical position or within 25° from the vertical axis.

Caution

Not following the recommended installation position will allow cryogenic liquids to reach the stem packing and leakages to the outside of the valve.

The LCV is a unidirectional valve and must be mounted with the relief bore against the direction of flow.

Attention

The directional flow arrow is marked on the front side and backside of the valve.

Please follow the next working steps to ensure a properly installation:

1. Transport the valve in the protective packaging to the installation site and unpack it only there.
2. Inspect the valve and actuator for any damages that may have occurred during transport. Damaged valves or actuators should not be installed.
3. Before installation, a function inspection must be performed: The valve must open and close properly. Discernible malfunctions must be remedied prior to commissioning.
4. Ensure that only valves are installed with the pressure class, the connection type and connection dimensions which meet the application requirements. Observe the marking on the body valve.

Please consider the following recommendations for the installation depending on the type of end connection:

a) Conical nipple (Threaded)

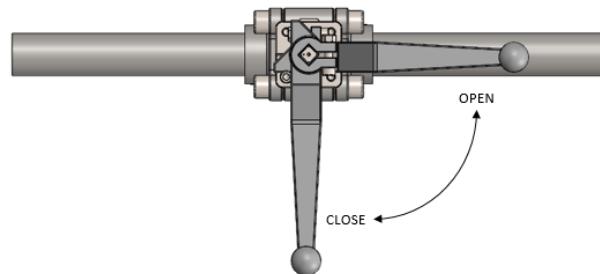
- To install these valves it is not necessary to remove the end connections from the valve body.
- Using the proper pipe adapter and nut, there is not required the use of sealants or gaskets, because the seal is metal to metal.
- Do not exceed tightening torques.

b) NPT

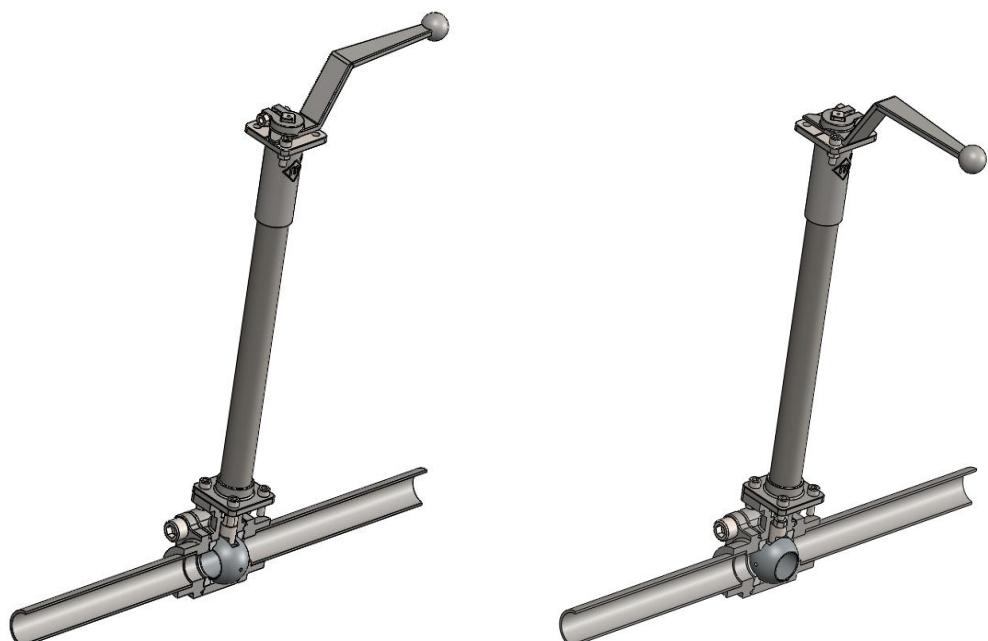
- To install this valve it is not necessary to remove the end connections.
- Make sure the pipeline and valve end threads are clean.
- Apply an appropriate thread sealant to the pipe threads and screw the valve in taking care not to overtighten the tapered threads.
- Do not use the valve stem as a lever to tighten the valve onto the pipe threads.

c) Socket Weld

- After positioning and tack welding the valve to the pipeline on both sides is necessary to remove the end connections from the valve body
- When the welding is finished, fix the ball body with the end connections again.

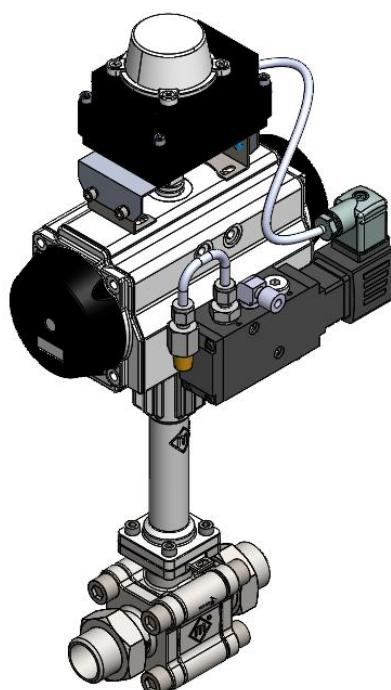

6. Operation

The LCV valve is a rotary valve, also known as quarter-turn valve. In order to operate the valve from the fully-closed position to the fully-open position or vice versa is required just a quarter or 90° turn of the handle or actuator.


6.1. Manual operation

The LCV valve can be operated manually by hand lever.

To operate the LCV into the open and closed position is required a quarter turn (90 degree turn) by turning the hand lever. Clockwise to close and counterclockwise to open the valve.


The LCV is in open position, when the hand lever is in line with the pipeline and in closed position, when the handle is perpendicular to the pipeline.

6.2. Automated operation

The valve can be operated automatically with electric and pneumatic actuator, which must be properly selected to provide required torque for a safe operation of the valve.

For a correct automated operation, it is necessary to comply with the mounting and operating instructions of the actuator.

Attention

Non-observance of these instructions may cause damage to the valve and pipe system.

If in doubt, please contact the actuator manufacturer

7. Maintenance

7.1. General

For the maintenance of LCV, m-tech has a spare parts kit available. This kit includes all non-metallic valve parts such as packing, seats, seals and guides.

If other parts are needed which are not in the spare parts set, m-tech recommends replacing the entire valve.

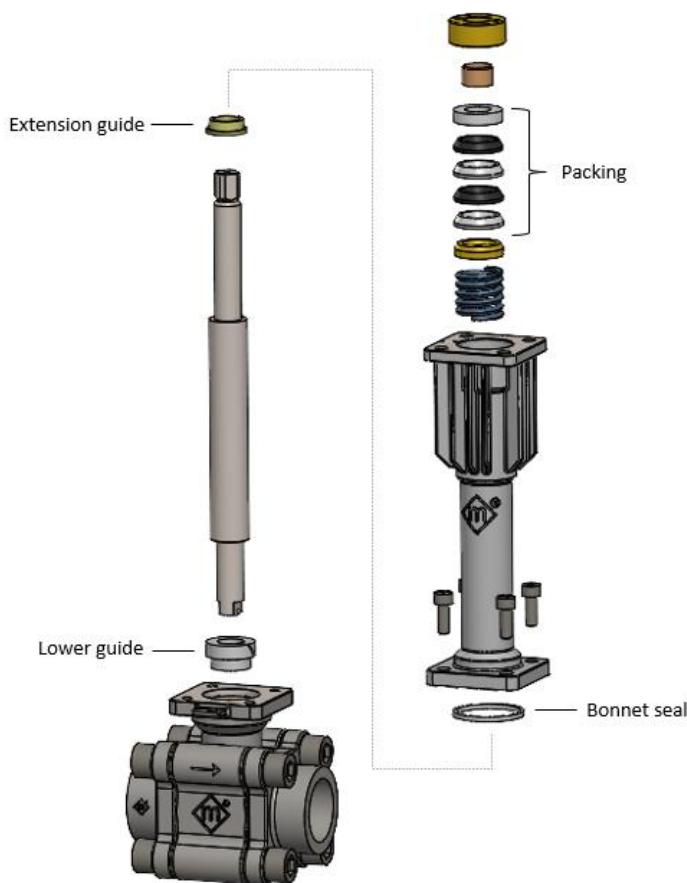
Caution

Before starting any maintenance the pipeline must be fully depressurized and ensure that no pressure is trapped inside the valve.

Attention

The valve must not be taken out of service for more than a month.

Caution

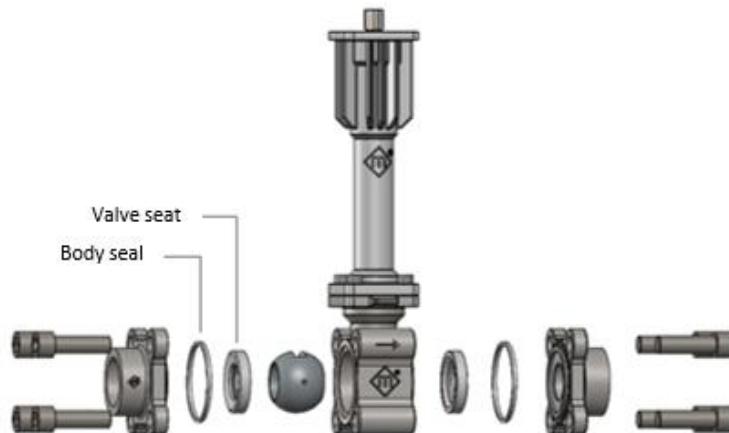

Do not interchange parts with valves from other manufacturer or from different rated valves. m-tech will not be held liable if the valve is modified in any way without consent.

7.2. Bonnet sealing replacement

In order to perform the replacement of bonnet sealing parts, the valve should be properly supported.

1. Loosen the bonnet screws (11). After that, lift the bonnet from the body.
2. Remove the lower guide (7) from the spindle.
3. After the spindle has been removed from inside the bonnet, pull out the extension guide (9).
4. Remove carefully the bonnet seal (10) from the bottom, avoiding scratching or damaging the mating face.
5. To replace the old packing it is necessary to unscrew the guide bush (18) with a special tool and then remove the packing rings (15-16), compression ring (14) and spring (13) from the packing area of the bonnet.

6. Then place the new guides (7, 9) on the spindle and insert the spindle into the upper part of the body. Insert the new bonnet seal (10) and put the valve cover across the spindle and tighten it with the screws (11) with the tightening torque specified in section 3.4.
7. Place the spring (13), compression ring (14) and then the new packing (15-16) in the correct sequence (one by one) and press the rings into the packing area of the bonnet.
8. Screw the guide bush with the special tool until it is seated on the valve bonnet.


Caution

Do not remove the packing without the appropriate tools.

7.3. Body sealing replacement

In order to perform the replacement of body sealing parts, the valve should be properly supported and should be brought to the open position.

1. Choose either inlet or outlet end connection to start with maintenance.
2. Loosen the body screws (6) and remove the end connection (5). The body seal (4) should come out with the end connection.
3. Remove the body seal (4) from the end connection.
4. Remove the seat (3) from the valve body.
5. Replace interior parts using spare parts and install the end connection again with the screws. Tighten screws (7) according to the values indicated in section 3.3.
6. Repeat the removal procedure for the other end connection.
7. To remove the ball (2), the valve shall be in closed position. Only then it is possible to replace it.

Caution

The valve may trap fluids in the ball cavity when closed.

8. LCV ATEX Version

8.1. General information

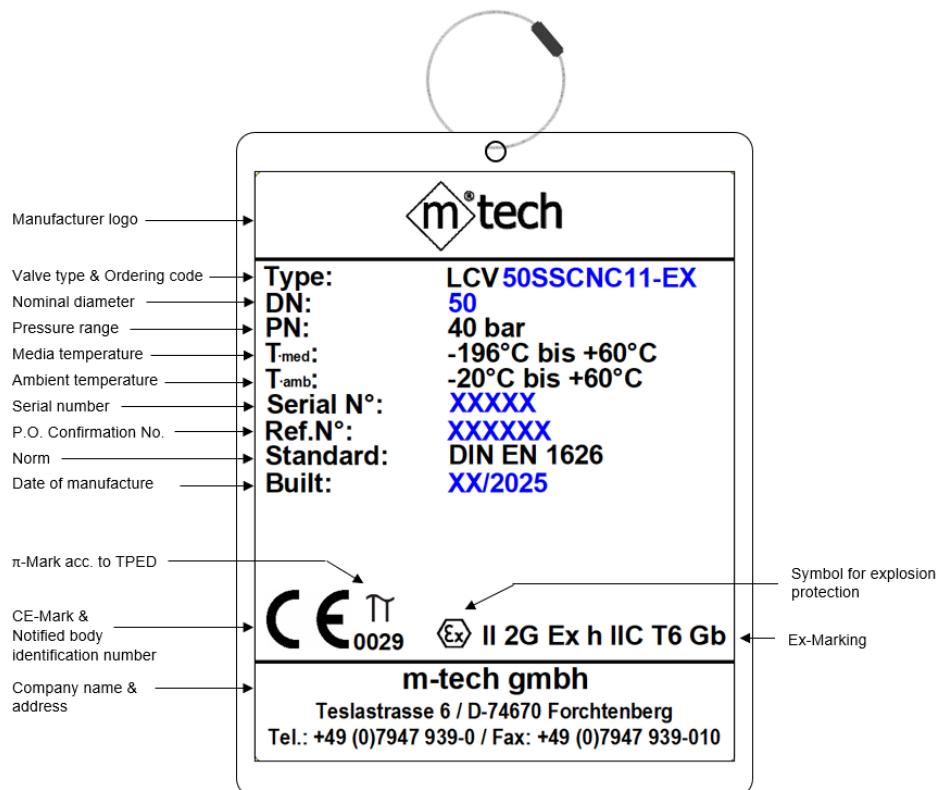
This section of the operating manual contains specific information regarding the LCV ATEX version, which are intended for use in hazardous explosive atmospheres. The assembly, the operating instructions of the LCV valves and their technical data are not modified unless this section of the instructions replace or exclude them.

The valve has been evaluated and tested according to the standards DIN EN ISO 80079-36:2016 and DIN EN ISO 80079-37:2016 for explosive atmospheres (zone 1 and 2).

8.2. Safety instructions for explosive atmospheres

The following requirements must be met and ensured by the owner/operator:

- For installation, commissioning and maintenance of this valve can only be carried out by trained personal for explosive atmospheres.
- The operator is responsible to familiarize himself with this operating manual before starting work.
- The operator is responsible to ensure that all applicable regulations, rules, standards and laws are met to their operating conditions and location.
- The operator must appropriate clothing and wear personal protective equipment for explosive atmospheres, which do not cause an electrostatic discharge.
- Do not use tools, which can cause sparks when they are used.



Notes

Please keep this instruction manual in a safe place for future reference

8.3. ATEX Marking

The LCV ATEX Version carries an ATEX nameplate in addition to the standard marking. The nameplate will be attached with a stainless steel wire to the body valve. The plate is also made of stainless steel. This nameplate contains following data according to ATEX Directive 2014/34/EU:

Attention

Do not remove, cover or paint over the ATEX nameplate.

The EX-marking coding as per table below.

	Symbol for Explosion Protection
II	Equipment group I: For use in underground mines II: For use in all other places
2	Equipment category Category 1: 1G suitable for zone 0, 1D suitable for zone 20 Category 2: 2G suitable for zone 1, 2D suitable for zone 21 Category 3: 3G suitable for zone 2, 3D suitable for zone 22
G	Environment G: Gas, Vapour D: Dust
Ex	Explosion protection
h	Type of protection. The code letter "h" is the symbol for non-electrical equipment.
IIC	Gas group IIC: suitable for gas group IIC, IIB and IIA IIB: suitable for gas group IIB and IIA IIA: suitable for gas group IIA Dust group IIIC: suitable for gas group IIIC, IIIB and IIIA IIIB: suitable for gas group IIIB and IIIA IIIA: suitable for gas group IIIA
T6	Temperature Class T1: 450°C, T2: 300°C, T3: 200°C, T4: 135°C, T5: 100°C, T6: 85°C
Gb	Equipment Protection Level (EPL) Ga or Da: very high protection level Gb or Db: high protection level Gc or Dc: enhanced protection level

8.4. Operation in explosive environments

The LCV ATEX version is intended for use in hazardous explosive gas atmospheres into zone 1 and 2. The usual atmospheric conditions under which may be assumed that the LCV can be operated are:

- Temperature –20 °C to +60 °C
- Absolute pressure 80 kPa (0,8 bar) to 110 kPa (1,1 bar); and
- Air with normal oxygen content, typically 21 % (v/v).

In case of different environmental conditions, these must be evaluated by owner/operator.

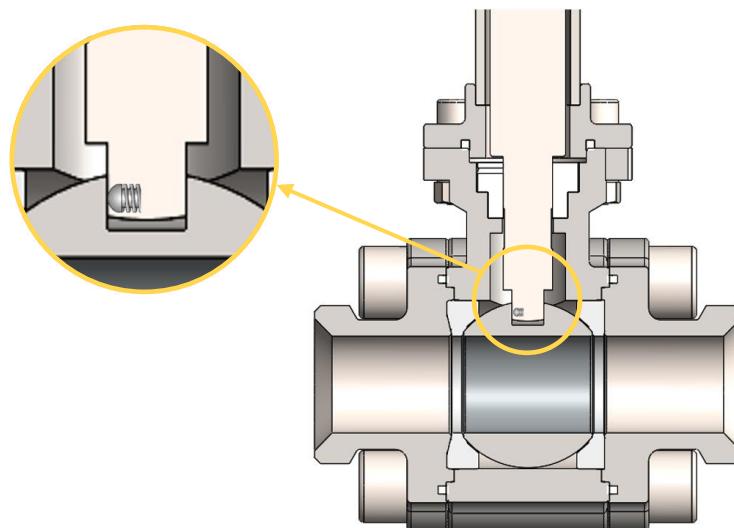
The minimum and maximum operating temperature of the valve in explosive atmospheres can be restricted depending on the mounted parts or accessories. The most unfavourable values should always be selected.

Attention

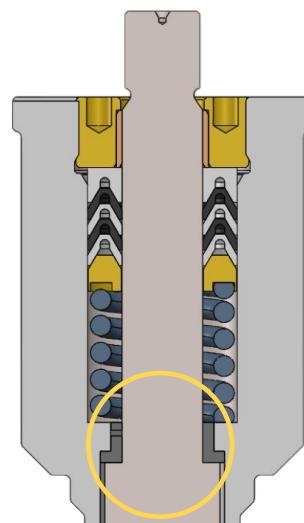
The operator must check the Ex-marking on the add-on components before starting the operation in order to ensure they are designed for explosive atmospheres.

In explosive atmospheres, ignitions caused by friction or impact sparks must be avoided. Possible ignition sources such as hot surfaces and mechanically generated sparks can be avoided, if the valve do not exceed the impact velocity of 1 m/s.

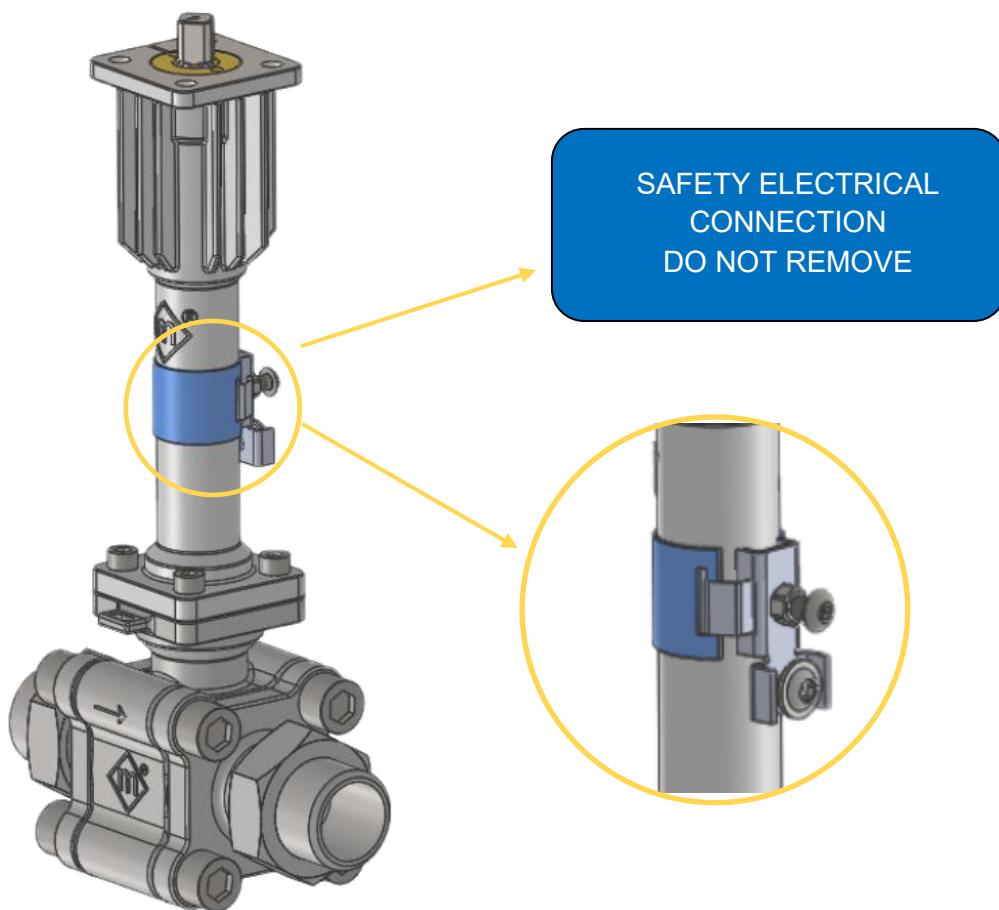
The operating temperature depends on the operating conditions of the medium and ambient temperature. The resulting temperature classification must be determined accordingly by the operator.


Caution

To avoid exothermic reactions (including self-ignition of dusts), do not transport or dose self-reactive substance


8.5. Anti-static design

The LCV is designed to meet the demanding static dissipative requirements prescribed in the ATEX directive (surface resistance $<10^9 \Omega$). The antistatic devices ensure that electrostatic charges will be conducted away from the inside of the valve. This conforms to the British Standard 5351 for the electrical continuity between the ball, stem and body.


1. A spring loaded ball made of stainless steel ensures metallic contact between the ball and stem.

2. A conductive stem seal (Carbon filled PTFE) ensures the contact between the stem and bonnet/body.

3. A earth clamp is fixed to the bonnet, which conducts an electrostatic charge out of the valve.

Attention

The friction of fluid through the piping system can generate an electrostatic charge and can cause a danger. The valve must be permanently earthed.

Attention

For outdoor installations, the valve must be permanently connected to equipotential bonding system as a lightning protection. This system will discharge lightning current and distribute them in the ground.